References and Notes
For reviews, see:
<A NAME="RU51611ST-1A">1a</A>
Mitscher LA.
Chem. Rev.
2005,
105:
559
<A NAME="RU51611ST-1B">1b</A>
Andriole VT.
The Quinolones
3rd
ed.:
Academic Press;
San Diego:
2000.
<A NAME="RU51611ST-2A">2a</A>
Xia Y.
Yang Z.-Y.
Xia P.
Bastow KF.
Nakanishi Y.
Nampoothiri P.
Hamel E.
Brossi A.
Lee K.-H.
Bioorg.
Med. Chem. Lett.
2003,
13:
2891
<A NAME="RU51611ST-2B">2b</A>
Tsuzuki Y.
Tomita K.
Shibamori K.
Sato Y.
Kashimoto S.
Chiba K.
J. Med. Chem.
2004,
47:
2097
<A NAME="RU51611ST-3A">3a</A>
Lucero Bd’A.
Gomes CRBV.
de Souza TML.
Ferreira VF.
Bioorg.
Med. Chem. Lett.
2006,
16:
1010
<A NAME="RU51611ST-3B">3b</A>
Moyer MP.
Weber FH.
Gross JL.
J. Med. Chem.
1992,
35:
4595
<A NAME="RU51611ST-3C">3c</A>
Santo RD.
Costi R.
Roux A.
Artico M.
Lavecchia A.
Marinelli L.
Novellino E.
Palmisano L.
Andreotti M.
Amici R.
Galluzzo CM.
Nencioni L.
Palamara AT.
Pommier Y.
Marchand C.
J.
Med. Chem.
2006,
49:
1939
<A NAME="RU51611ST-3D">3d</A>
Sato M.
Motomura T.
Aramaki H.
Matsuda T.
Yamashita M.
Ito Y.
Kawakami H.
Matsuzaki Y.
Watanabe W.
Yamataka K.
Ikeda S.
Kodama E.
Matsuoka M.
Shinkai H.
J.
Med. Chem.
2006,
49:
1506
<A NAME="RU51611ST-3E">3e</A>
Massari S.
Daelemans D.
Barreca ML.
Knezevich A.
Sabatini S.
Cecchetti V.
Marcello A.
Pannecouque C.
Tabarrini O.
J.
Med. Chem.
2010,
53:
641
<A NAME="RU51611ST-4A">4a</A>
These
three compounds having a substituent on the C-2 or C-3 position
in Figure
[¹]
exhibited
potent anti-HIV activity in the nanomolar range (IC50 = 0.23-9.2
nM).
<A NAME="RU51611ST-4B">4b</A>
An anti-HIV activity
was evaluated using MaRBLE cells obtained by transfection of HPB-Ma
derived from human T-lymphocytes with a luciferase gene and a CCR5
gene etc. of which expressions were regulated by HIV-1 LTR.
<A NAME="RU51611ST-4C">4c</A>
Oonishi Y,
Awasaguchi K,
Nomura N,
Todo K,
Kawai H, and
Wakatsuki T. inventors; Int.
Patent Appl., WO2011090095. For more details, see:
<A NAME="RU51611ST-4D">4d</A>
Chiba-Mizutani T.
Miura H.
Matsuda M.
Matsuda Z.
Yokomaku Y.
Miyauchi K.
Nishizawa M.
Yamamoto N.
Sugiura W.
J. Clin. Microbiol.
2007,
45:
447
<A NAME="RU51611ST-5">5</A> For a recent review, see:
Kouznetsov VV.
Mendez
LYV.
Gomez MM.
Curr.
Org. Chem.
2005,
9:
141
<A NAME="RU51611ST-6A">6a</A>
Werner W.
Tetrahedron
1969,
25:
255
<A NAME="RU51611ST-6B">6b</A>
Chen B.
Huang X.
Wang J.
Synthesis
1987,
482
<A NAME="RU51611ST-6C">6c</A>
Madrid PB.
Sherrill J.
Liou AP.
Weisman JL.
DeRisi JL.
Guy RK.
Bioorg.
Med. Chem. Lett.
2005,
15:
1015
<A NAME="RU51611ST-7">7</A>
Camps R.
Chem.
Ber.
1899,
32:
3228
<A NAME="RU51611ST-8A">8a</A>
Huang J.
Chen Y.
King AO.
Dilmeghani M.
Larsen RD.
Faul MM.
Org.
Lett.
2008,
10:
2609
<A NAME="RU51611ST-8B">8b</A>
Jones CP.
Anderson KW.
Buchwald SL.
J. Org. Chem.
2007,
72:
7968
<A NAME="RU51611ST-9A">9a</A>
Sosnovskikh VY.
Usachev BI.
Sevenard DV.
Röschenthaler G.-V.
J. Fluorine Chem.
2005,
126:
779
<A NAME="RU51611ST-9B">9b</A>
Usachev BI.
Sosnovskikh VY.
J.
Fluorine Chem.
2004,
125:
1393
<A NAME="RU51611ST-9C">9c</A>
López SE.
Rebollo O.
Salazar J.
Charris JE.
Yánez C.
J. Fluorine Chem.
2003,
120:
71
<A NAME="RU51611ST-9D">9d</A>
Kim DH.
J.
Heterocycl. Chem.
1981,
18:
1393
<A NAME="RU51611ST-9E">9e</A>
Friary RJ.
Seidl V.
Schwerdt JH.
Cohen MP.
Hou D.
Nafissi M.
Tetrahedron
1993,
49:
7169
<A NAME="RU51611ST-10">10</A>
Bernini R.
Cacchi S.
Fabrizi G.
Sferrazza A.
Synthesis
2009,
1209
<A NAME="RU51611ST-11">11</A>
Zhao T.
Xu B.
Org. Lett.
2010,
12:
212
<A NAME="RU51611ST-12">12</A>
Radl S.
Obadalova I.
Collect. Czech. Chem. Commun.
2004,
69:
822
<A NAME="RU51611ST-13">13</A>
Analytical and
Spectral Data of
N
-Arylenaminone 5: pink solid; mp 112-113 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 7.75
(dd, J = 8.3, 8.0 Hz, 1 H),
7.36 (dd, J = 8.3, 1.7 Hz, 1
H), 7.29 (dd, J = 10.4, 1.7
Hz, 1 H), 7.22 (ddd, J = 8.8,
8.5, 5.8 Hz, 1 H), 6.88-6.98 (m, 2 H), 5.89 (d, J = 2.2 Hz, 1 H), 2.02 (s, 3
H). ¹³C NMR (100 MHz, CDCl3): δ = 184.6
(d, J = 4.1
Hz), 163.8, 161.1 (dd, J = 249.6,
10.8 Hz), 160.1 (d, J = 256.2
Hz), 157.0 (dd, J = 250.4, 12.4
Hz), 131.7 (d, J = 3.3 Hz),
128.5 (d, J = 9.1 Hz), 127.7
(d, J = 3.3 Hz), 127.2 (d, J = 13.2 Hz), 125.1 (d, J = 9.9 Hz), 122.6 (dd, J = 13.2, 4.1 Hz), 119.8 (d, J = 27.2 Hz), 111.6 (dd, J = 22.3, 4.1 Hz), 104.9 (dd, J = 26.0, 24.4 Hz), 98.6 (d, J = 10.7 Hz), 19.8 (d, J = 2.5 Hz). IR (neat): 1590,
1568, 1541, 1433, 1395, 1318, 1304, 1283, 1094, 882, 857, 778 cm-¹.
HRMS (DART):
m/z [M + H]+ calcd
for C16H12BrF3NO: 370.00544; found: 370.00546.
<A NAME="RU51611ST-14">14</A>
Rudorf W.-D.
Schierhorn A.
Augustin M.
Tetrahedron
1979,
35:
551
<A NAME="RU51611ST-15A">15a</A>
In
a synthesis of 4-oxoquinoline derivatives, enolate formation of
2,4-dichloroacetophenone was conducted with t-BuOK
as a base in THF at r.t. to give a good result of obtaining ketene-S,N-acetal.
<A NAME="RU51611ST-15B">15b</A>
When 4-bromo-2-fluoro-acetophenone
(1) was used as a starting material, 2-anilino-7-bromo-1-thiochromone
was produced via the same synthetic protocol.
<A NAME="RU51611ST-16">16</A>
Barder TE.
Walker SD.
Martinelli JR.
Buchwald
SL.
J.
Am. Chem. Soc.
2005,
127:
4685
<A NAME="RU51611ST-17">17</A> For a review of recent highlights,
see:
Singh RP.
Shreeve JM.
Acc. Chem. Res.
2004,
37:
31
<A NAME="RU51611ST-18">18</A>
General Procedure
for the Synthesis of Aldehyde 3: To a solution of 1-aryl-2-methyl-4-oxoquinoline 2 (1.58 g, 4.51 mmol) in 1,4-dioxane (18
mL) was added selenium dioxide (0.53 g, 4.51 mmol) at r.t. The mixture
was heated under reflux for 4 h. The solvent was concentrated in
vacuo, then the residue was diluted with EtOAc and the suspension
was filtered. The filtrate was washed with sodium thiosulfate solution
and brine, dried over MgSO4, filtered and concen-trated
in vacuo. The residue was subjected to silica gel column chromatography
(hexane-EtOAc, 2:1 → 1:1, gradient) to afford
aldehyde 3 (0.99 g, 60% yield)
as a pale yellow solid. Analytical and Spectral
Data of Aldehyde 3: pale yellow solid; mp 195-196 ˚C. ¹H
NMR (400 MHz, DMSO-d
6): δ = 9.64
(s, 1 H), 8.16 (d, J = 8.5 Hz,
1 H), 7.75 (ddd, J = 8.9, 8.9,
6.0 Hz, 1 H), 7.68 (dd, J = 8.5,
1.7 Hz, 1 H), 7.64-7.72 (m, 1 H), 7.36-7.42 (m,
1 H), 7.01 (br s, 1 H), 6.97 (s, 1 H). ¹³C
NMR (100 MHz, DMSO-d
6): δ = 188.4, 177.3,
163.0 (dd, J = 250.0, 12.0 Hz),
158.3 (dd, J = 250.9, 13.6 Hz),
143.9, 142.7, 132.2 (d, J = 10.7
Hz), 128.2, 127.9, 127.8, 125.2, 121.1 (dd, J = 13.2,
4.1 Hz), 119.4, 118.5, 113.3 (dd, J = 22.3,
3.3 Hz), 105.7 (dd, J = 26.9,
23.6 Hz). IR (neat): 1702, 1631, 1595, 1512, 1448, 1271, 1149, 1008, 972,
947, 856, 830 cm-¹. HRMS (DART): m/z [M + H]+ calcd
for C16H9BrF2NO2: 363.97847;
found: 363.97898.
<A NAME="RU51611ST-19">19</A>
General Procedure
for the Synthesis of Ketene-
S
,
N
-acetal 8: To a solution of 3-acetyl-2,6-dichloropyridine
(7) in THF (26 mL) was added lithium diisopropylamide
(2.0 M, 3.0 mL, 6.05 mmol) dropwise at -40 ˚C
under nitrogen atmosphere. After stirring at -40 ˚C
for 30 min, to the mixture was added a solution of 2,6-difluorophenyl isothiocyanate
(2.08 g, 12.1 mmol) in THF (11 mL). The mixture was gradually warmed
up to r.t. while stirring for 1.5 h. After stirring, the mixture
was cooled in an ice bath. To the mixture was added iodomethane
(0.75 mL, 12.1 mmol) at 5 ˚C and the mixture was warmed
up to r.t. while stirring for 20 min. The reaction was quenched
with sat. NH4Cl solution at 5 ˚C and the mixture
was extracted with EtOAc. The organic layer was washed with brine,
dried over MgSO4, filtered and concentrated in vacuo.
The residue was subjected to silica gel column chromatography (hexane-EtOAc,
20:1 → 10:1, gradient) to afford ketene-S,N-acetal 8 (0.66
g, 35% yield) as a pale yellow solid. Analytical
and Spectral Data of Ketene-
S
,
N
-acetal 8: pale yellow solid; mp 164-165 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 12.78 (br s,
1 H), 7.91 (d, J = 8.1 Hz, 1
H), 7.41 (ddd, J = 8.7, 8.7,
5.9 Hz, 1 H), 7.35 (d, J = 8.1
Hz, 1 H), 6.90-7.00 (m, 2 H), 5.70 (s, 1 H), 2.41 (s, 3
H). ¹³C NMR (100 MHz, CDCl3): δ = 183.6,
170.5, 161.7 (dd, J = 250.4,
10.8 Hz), 157.3 (dd, J = 252.5,
12.8 Hz), 150.5, 146.7, 141.0, 135.6, 129.4 (d, J = 10.7
Hz), 123.1, 121.8 (dd, J = 12.4,
4.1 Hz), 111.5 (dd, J = 22.3,
4.1 Hz), 105.0 (dd, J = 26.5,
24.0 Hz), 92.9, 14.7. IR (neat): 1575, 1512, 1468, 1411,
1260, 1143, 1045, 966, 846, 730 cm-¹.
HRMS (DART): m/z [M + H]+ calcd
for C15H11Cl2F2N2OS:
374.99372; found: 374.99405.
<A NAME="RU51611ST-20">20</A>
General Procedure
for the Synthesis of 1-Aryl-3-fluoro-4-oxoquinoline 15: To
a solution of N-arylenaminone 14 (100 mg, 0.28 mmol) in DMF (2.8 mL)
was added Selectfluor® (149 mg, 0.42 mmol) at
r.t. The mixture was stirred for 30 min at the same temperature.
To the mixture was added K2CO3 (116 mg, 0.84
mmol) and the mixture was heated to 80 ˚C. After stirring
for 30 min at 80 ˚C, the mixture was cooled and diluted
with EtOAc and H2O. The organic layer was washed with
brine, dried over MgSO4, filtered and concentrated in
vacuo. The residue was subjected to silica gel column chromatography
(hexane-EtOAc, 3:1) to afford 1-aryl-3-fluoro-4-oxoquinoline 15 (38 mg, 38% yield) as a pale
yellow solid. Analytical and Spectral Data of
1-Aryl-3-fluoro-4-oxoquinoline 15: pale yellow solid; mp 197-198 ˚C. ¹H
NMR (400 MHz, DMSO-d
6): δ = 8.66
(d, J = 8.3 Hz, 1 H), 8.24 (d, J = 8.6 Hz, 1 H), 7.89 (ddd, J = 8.8, 8.8, 5.9 Hz, 1 H),
7.69-7.76 (m, 1 H), 7.64 (dd, J = 8.6,
1.6 Hz, 1 H), 7.40-7.46 (m, 1 H), 7.17 (s, 1 H). ¹³C
NMR (100 MHz, DMSO-d
6): δ = 167.8
(d, J = 14.9 Hz), 162.9 (dd, J = 249.6, 11.6 Hz), 157.7 (dd, J = 252.5, 13.6 Hz), 146.6 (d, J = 238.0 Hz), 140.6, 132.0
(d, J = 28.9 Hz), 131.7 (d, J = 3.3 Hz), 127.8 (d, J = 4.1 Hz), 127.2, 126.6, 125.4
(d, J = 9.9 Hz), 123.5 (dd, J = 12.8, 3.7 Hz), 119.1, 113.4
(dd, J = 22.7, 3.7 Hz), 106.0
(dd, J = 27.3, 23.1 Hz). IR
(neat): 1624, 1587, 1509, 1328, 1217, 1193, 1143, 1101, 968, 926,
853, 834, 772 cm-¹. HRMS (DART): m/z [M + H]+ calcd
for C15H8BrF3NO: 353.97414; found:
353.97405.